NCERT SOLUTIONS
 CLASS-XI CHEMISTRY CHAPTER-5
 STATES OF MATTER: GASES AND LIQUIDS

Q1. Calculate the minimum pressure required to compress $500 \mathrm{dm}^{3}$ of air at 1 bar to $200 \mathrm{dm}^{3}$ at $30^{\circ} \mathrm{C}$?

Answer:

Initial pressure, $P_{1}=1$ bar

Initial volume, $\mathrm{V}_{1}=500 \mathrm{dm}^{3}$
Final volume, $V_{2}=200 \mathrm{dm}^{3}$
As the temperature remains same, the final pressure $\left(P_{2}\right)$ can be calculated with the help of Boyle's law.

Acc. Boyle's law,
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$P_{2}=\frac{P_{1} V_{1}}{\underline{V_{2}}}$
$=\frac{1 \times 500}{200}$
$=2.5 \mathrm{bar}$
\therefore the minimum pressure required to compress is 2.5 bar.

Q2. A container with a capacity of 120 mL contains some amount of gas at $35^{\circ} \mathrm{C}$ and 1.2 bar pressure. The gas is transferred to another container of volume 180 mL at $35^{\circ} \mathrm{C}$. Calculate what will be the pressure of the gas?

Answer:

Initial pressure, $P_{1}=1.2$ bar

Initial volume, $\mathrm{V}_{1}=120 \mathrm{~mL}$
Final volume, $\mathrm{V}_{2}=180 \mathrm{~mL}$

As the temperature remains same, final pressure $\left(\mathrm{P}_{2}\right)$ can be calculated with the help of Boyle's law.

According to the Boyle's law,
$\mathrm{P}_{2}=\frac{P_{1} V_{1}}{V_{2}}$
$P_{1} V_{1}=P_{2} V_{2}$
$=\frac{1.2 \times 120}{180}$
$=0.8 \mathrm{bar}$

Therefore, the min pressure required is 0.8 bar.

Q3. Prove that at a given temp density of a gas is proportional to the gas pressure by using the equation

of state $p V=n R T$.
Answer:
The equation of state is given by, $\mathrm{pV}=\mathrm{nRT} \ldots \ldots$. (1)
Where, $p=$ pressure
$V=$ volume
N = number of moles
$R=$ Gas constant
$\frac{T_{n}}{V}=\frac{\text { temp }}{R T}$
$\frac{m}{M V}=\frac{p}{R T} \ldots$
Where, $m=$ mass
$M=$ molar mass
But, $\frac{m}{V}=\mathrm{d}$
Where, $\mathrm{d}=$ density
Therefore, from equation (2), we get
$\frac{d}{M}=\frac{p}{R T}$
$\mathrm{d}=\left(\frac{M}{R T}\right) \mathrm{p}$
$d \propto p$
Therefore, at a given temp, the density of gas (d) is proportional to its pressure (p).

Q4. At $0^{\circ} \mathrm{C}$, the density of a certain oxide of a gas at 2 bars is equal to that of dinitrogen at 5 bars. Calculate the molecular mass of the oxide.

Answer:

Density (d) of the substance at temp (T) can be given by,
$\mathrm{d}=\frac{M p}{R T}$
Now, density of oxide $\left(\mathrm{d}_{1}\right)$ is as given,
$d_{1}=\frac{M_{1} p_{1}}{R T}$
Where, $\mathrm{M}_{1}=$ mass of the oxide

$\mathrm{p}_{1}=$ pressure of the oxide

Density of dinitrogen gas (d_{2}) is as given,
$d_{2}=\frac{M_{1} p_{2}}{R T}$
Where, M_{2} = mass of the oxide

$p_{2}=$ pressure of the oxide
Acc to the question,
$d_{1}=d_{2}$
Therefore, $M_{1} p_{1}=M_{2} p_{2}$
Given:
$p_{1}=2$ bar
$p_{2}=5$ bar
Molecular mass of nitrogen, $M_{2}=28 \mathrm{~g} / \mathrm{mol}$
Now, M_{1}
$=\frac{M_{2} p_{2}}{p_{1}}$
$=\frac{28 \times 5}{2}$
$=70 \mathrm{~g} / \mathrm{mol}$
Therefore, the molecular mass of the oxide is $70 \mathrm{~g} / \mathrm{mol}$.

Q5. A pressure of 1 g of an ideal gas X at $27^{\circ} \mathrm{C}$ is found to be 2 bars. When 2 g of another ideal gas is added in the same container at same temp the pressure becomes 3 bars. Find the relation between their molecular masses.

Answer:

For ideal gas A , the ideal gas equation is given by,
$p_{X} V=n_{X} R T \ldots \ldots$ (1)

Where p_{X} and n_{X} represent the pressure and number of moles of gas X.
For ideal gas Y, the ideal gas equation is given by,
$p_{Y} V=n_{Y} R T \ldots \ldots$ (2)
Where, p_{Y} and n_{Y} represent the pressure and number of moles of gas Y.
[V and T are constants for gases X and Y]
From equation (1),
$p_{X} V=\frac{m_{X}}{M_{X}} \mathrm{RT}$
$\frac{p_{X} M_{X}}{m_{X}}=\frac{R T}{V}$
From equation (2),
$p_{Y} V=\frac{m_{Y}}{M_{Y}}$ RT
$\frac{p_{Y} M_{Y}}{m_{Y}}=\frac{R T}{V}$.
Where, M_{X} and M_{Y} are the molecular masses of gases X and Y respectively.
Now, from equation (3) and (4),
$\frac{p_{X} M_{X}}{m_{X}}=\frac{p_{Y} M_{Y}}{m_{Y}}$.
Given,
$m_{X}=1 \mathrm{~g}$
$p_{X}=2$ bar
$m_{Y}=2 \mathrm{~g}$
$p_{Y}=(3-2)=1$ bar (Since total pressure is 3 bar)
Substituting these values in equation (5),
$\frac{2 \times M_{X}}{1}=\frac{1 \times M_{Y}}{2}$
$4 M_{X}=M_{Y}$
Therefore, the relationship between the molecular masses of X and Y is,
$4 M_{X}=M_{Y}$

Q6. The drain cleaner has small bits of aluminum, which react with caustic soda to produce dihydrogen. What volume of dihydrogen at $20^{\circ} \mathrm{C}$ and 1 bar will be released when 0.15 g of aluminum reacts?

Answer:

The reaction of aluminum with caustic soda is as given below:
$2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
At Standard Temperature Pressure (273.15 K and 1 atm), $54 \mathrm{~g}(2 \times 27 \mathrm{~g})$ of Al gives $3 \times 22400 \mathrm{~mL}$ of H_{2}.
Therefore, 0.15 g Al gives:
$=\frac{3 \times 22400 \times 0.15}{54} \mathrm{~mL}$ of H_{2}
$=186.67 \mathrm{~mL}$ of H_{2}
At Standard Temperature Pressure,
$p_{1}=1 \mathrm{~atm}$
$V_{1}=186.67 \mathrm{~mL}$
$T_{1}=273.15 \mathrm{~K}$
Let the volume of dihydrogen be V_{2} at $p_{2}=0.987 \mathrm{~atm}$ (since $\left.1 \mathrm{bar}=0.987 \mathrm{~atm}\right)$ and $T_{2}=20^{\circ} \mathrm{C}=(273.15+20)$
$\mathrm{K}=293.15 \mathrm{~K}$.
Now,
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$
$V_{2}=\frac{p_{1} V_{1} T_{2}}{p_{2} T_{1}}$
$=\frac{1 \times 186.67 \times 293.15}{0.987 \times 27315}$
manma.
$=\angle \mathrm{UL} .98 \mathrm{~mL}$
$=203 \mathrm{~mL}$
Hence, 203 mL of dihydrogen will be released.

Q7. Calculate the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a $9 \mathrm{dm}^{3}$ at flask at 27°.

Answer:

It is known that,
$\mathrm{p}=\frac{m}{M} \frac{R T}{V}$
For methane $\left(\mathrm{CH}_{4}\right)$,
$p_{C H_{4}}$
$=\frac{3.2}{16} \times \frac{8.314 \times 300}{9 \times 10^{-3}}\left[\right.$ Since $\left.9 \mathrm{dm}^{3}=9 \times 10^{-3} \mathrm{~m}^{3} \quad 27^{\circ} \mathrm{C}=300 \mathrm{~K}\right]$
$=5.543 \times 10^{4} \mathrm{~Pa}$
For carbon dioxide $\left(\mathrm{CO}_{2}\right)$,
$p_{\mathrm{CO}_{2}}$
$=\frac{4.4}{44} \times \frac{8.314 \times 300}{9 \times 10^{-3}}$
$=2.771 \times 10^{4} \mathrm{~Pa}$
Total pressure exerted by the mixture can be calculated as:
$\mathrm{p}=p_{\mathrm{CH}_{4}}+p_{\mathrm{CO}_{2}}$
$=\left(5.543 \times 10^{4}+2.771 \times 10^{4}\right) \mathrm{Pa}$
$=8.314 \times 10^{4} \mathrm{~Pa}$

Q8. Calculate the pressure of the gaseous mixture when 0.5 L of H_{2} at 0.8 bars and 2.0 L of dioxygen at
0.7 bars are introduced in a $1 L$ container at 27°.

Answer:
Let the partial pressure of H_{2} in the container be $p_{\mathrm{H}_{2}}$.
Now,
$p_{1}=0.8$ bar
$p_{2}=p_{H_{2}}$
$V_{1}=0.5 \mathrm{~L}$
$V_{2}=1 \mathrm{~L}$
It is known that,
$p_{1} V_{1}=p_{2} V_{2}$
$p_{2}=\frac{p_{1} \times V_{1}}{V_{2}}$
$p_{H_{2}}=\frac{0.8 \times 0.5}{1}$
$=0.4 \mathrm{bar}$
Now, let the partial pressure of O_{2} in the container be $p_{\mathrm{O}_{2}}$.

Now,

$p_{1}=0.7$ bar
$p_{2}=p_{O_{2}}$
$V_{1}=2.0 \mathrm{~L}$
$V_{2}=1 \mathrm{~L}$
$p_{1} V_{1}=p_{2} V_{2}$
$p_{2}=\frac{p_{1} \times V_{1}}{V_{2}}$
$p_{O_{2}}=\frac{0.7 \times 20}{1}$
$=1.4 \mathrm{bar}$
Total pressure of the gas mixture in the container can be obtained as:
$p_{\text {total }}=p_{H_{2}}+p_{O_{2}}$
$=0.4+1.4$
$=1.8 \mathrm{bar}$

Q9. A density of a gas is $5.46 \mathrm{~g} / \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ at 2 bar pressure. Calculate its density at Standard
Temperature Pressure.

Answer:

Given,
$\mathrm{d}_{1}=5.46 \mathrm{~g} / \mathrm{dm}^{3}$
$p_{1}=2$ bar
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}$
$p_{2}=1$ bar
$\mathrm{T}_{2}=273 \mathrm{~K}$
$d_{2}=$?
The density $\left(d_{2}\right)$ of the gas at STP can be calculated using the equation,
$\mathrm{d}=\frac{M p}{R T}$
$\frac{d_{1}}{d_{2}}=\frac{\frac{M p_{1}}{R T_{1}}}{\frac{M p_{2}}{R T_{2}}}$
$\frac{d_{1}}{d_{2}}=\frac{p_{1} T_{2}}{p_{2} T_{1}}$
$\mathrm{d}_{2}=\frac{p_{2} T_{1} d_{1}}{p_{1} T_{2}}$
$=\frac{1 \times 300 \times 5.46}{2 \times 273}$
$=3 \mathrm{~g} \mathrm{dm}^{-3}$
Hence, the density of the gas at STP will be $3 \mathrm{~g} \mathrm{dm}^{-3}$

Q10. 34.05 mL of phosphorus vapour has weight 0.0625 g at $546^{\circ} \mathrm{C}$ and 0.1 bar pressure. Calculate the molar mass of phosphorus.

Answer:

Given,
$\mathrm{p}=0.1$ bar
$\mathrm{V}=34.05 \mathrm{~mL}=34.05 \times 10^{-3} \mathrm{dm}^{3}$
$\mathrm{R}=0.083$ bar $d m^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=546^{\circ} \mathrm{C}=(546+273) \mathrm{K}=819 \mathrm{~K}$
The no of moles (n) can be calculated using the ideal gas equation as:
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{n}=\frac{p V}{R T}$
$=\frac{0.1 \times 34.05 \times 10^{-3}}{0.083 \times 10}$
$=5.01 \times 10^{-5} \mathrm{~mol}$
Therefore, molar mass of phosphorus $=\frac{0.0625}{5.01 \times 10^{-5}}$
$=1247.5 \mathrm{~g} \mathrm{~mol}^{-1}$

Q11. A student forgot to add the reaction mixture to the container at $27^{\circ} \mathrm{C}$ but instead, he placed the container on the flame. After a lapse of time, he came to know about his mistake, and using a pyrometer he found the temp of the container 477° C. What fraction of air would have been expelled out?

Answer:

Let the volume of the container be V .
The volume of the air inside the container at $27^{\circ} \mathrm{C}$ is V .
Now
$\mathrm{V}_{1}=\mathrm{V}$
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{KV}_{2}=?$
$\mathrm{T}_{2}=477^{\circ} \mathrm{C}=750 \mathrm{~K}$

Acc to Charles's law,
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
$V_{1}=\frac{V_{1} T_{2}}{T_{1}}$
$=\frac{750 \mathrm{~V}}{300}$
$=2.5 \mathrm{~V}$
Therefore, volume of air expelled out
$=2.5 \mathrm{~V}-\mathrm{V}=1.5 \mathrm{~V}$
Hence, fraction of air expelled out
$=\frac{1.5 \mathrm{~V}}{2.5 \mathrm{~V}}$
$=\frac{3}{5}$

Q12. What is the temp of 4.0 mol of gas occupying $5 \mathrm{dm}^{3}$ at 3.32 bar? at $K^{-1} \mathrm{~mol}^{-1}$).

Answer:

Given,
$\mathrm{N}=4.0 \mathrm{~mol}$
$\mathrm{V}=5 d m^{3}$
$p=3.32$ bar
$\mathrm{R}=0.083$ bar $d m^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$

The temp (T) can be calculated using the ideal gas equation as
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{T}=\frac{p V}{n R}$
$=\frac{3.32 \times 5}{4 \times 0.083}$
$=50 \mathrm{~K}$
Therefore, the required temp is 50 K

Q13. What is the total no of electrons present in 1.4 g of dinitrogen gas?

Answer:
Molar mass of dinitrogen $\left(\mathrm{N}_{2}\right)=28 \mathrm{~g} \mathrm{~mol}^{-1}$
Thus, 1.4 g of N_{2}
$=\frac{1.4}{28}$
$=0.05 \mathrm{~mol}$
$=0.05 \times 6.02 \times 10^{23}$ no of molecules
$=3.01 \times 10^{23}$ no. of molecules
\qquad
inuvv, 1 Hivieluie oi in 2 las 14 Eiellivis.
Therefore, 3.01×10^{23} molecules of N_{2} contains,
$=14 \times 3.01 \times 1023$
$=4.214 \times 10^{23}$ electrons

Q14. How much time would it take to distribute 1 Avogadro no. of wheat grains, if 10^{10} grains are distracted each second?

Answer:
Avogadro no. $=6.02 \times 10^{23}$
Therefore, time taken
$=\frac{6.02 \times 10^{23}}{10^{10}} s$
$=6.02 \times 10^{13} \mathrm{~s}$
$=\frac{6.02 \times 10^{23}}{60 \times 60 \times 24 \times 365}$ years
$=1.909 \times 10^{6}$ years
Therefore, the time taken would be 1.909×10^{6} years.

Q15. What is the total pressure in the mixture of 4 g of dihydrogen and 8 g of dioxygen in a container of 1 $d \mathrm{~m}^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$?

Answer:

Given:
Mass of $\mathrm{O}_{2}=8 \mathrm{~g}$
No. of moles
$=\frac{8}{32}$
$=0.25 \mathrm{~mole}$

Mass of $\mathrm{H}_{2}=4 \mathrm{~g}$
No. of moles
$=\frac{4}{2}$
$=2 \mathrm{~mole}$

Hence, total no of moles in the mixture

$$
=0.25+2
$$

$$
=2.25 \mathrm{~mole}
$$

Given:

$\mathrm{V}=1 \mathrm{dm}{ }^{3}$
$\mathrm{n}=2.25 \mathrm{~mol}$
$\mathrm{R}=0.083$ bar $d m^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$

Total pressure
$\mathrm{pV}=\mathrm{nR} T$
$\mathrm{p}=\frac{n R T}{V}$
$=\frac{225 \times 0.083 \times 300}{1}$
$=56.025 \mathrm{bar}$

Q16. The difference between the mass of displaced air and the mass of the balloon is known as pay load. What is the pay load when a balloon of radius is 10 m , mass 100 kg is filled with helium at 1.66 bar at 27° C.
(Density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$ and $R=0.083$ bar dm${ }^{3}$ at $K^{-1} \mathrm{~mol}^{-1}$)

Answer:

Given:
$\mathrm{r}=10 \mathrm{~m}$
Therefore, volume of the balloon
$=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \times \frac{22}{7} \times 10^{3}$
$=4190.5 \mathrm{~m}^{3}$ (approx.)
Therefore, the volume of the displaced air
$=4190.5 \times 1.2 \mathrm{~kg}$
$=5028.6 \mathrm{~kg}$
Mass of helium
$=\frac{M p V}{R T}$
Where, $\mathrm{M}=4 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}$
$p=1.66$ bar
$\mathrm{V}=$ volume of the balloon
$=4190.5 \mathrm{~m}^{3}$
$\mathrm{R}=0.0830 .083$ bar $d \mathrm{~m}^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$

Then,

$\mathrm{m}=\frac{4 \times 10^{-3} \times 1.66 \times 4190.5 \times 10^{3}}{0.083 \times 300}$
$=1117.5 \mathrm{~kg}$ (approx.)
Now, total mass with helium,
$=(100+1117.5) \mathrm{kg}$
$=1217.5 \mathrm{~kg}$
Therefore, pay load,
$=(5028.6-1217.5)$
$=3811.1 \mathrm{~kg}$
Therefore, the pay load of the balloon is 3811.1 kg .

Q17. What is the volume occupied by 8.8 g of CO_{2} at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure? Given that $R=0.083$ bar dm^{3} at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$.

Answer:
$\mathrm{pVM}=\mathrm{mR} T$
$\mathrm{V}=\frac{m R T}{M p}$
Given:
$\mathrm{m}=8.8 \mathrm{~g}$
$\mathrm{R}=0.083$ bar $d m^{3}$ at $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=31.1^{\circ} \mathrm{C}=304.1 \mathrm{~K}$
$M=44 \mathrm{~g}$
$p=1$ bar
Thus, Volume (V),
$=\frac{8.8 \times 0.083 \times 304.1}{44 \times 1}$
$=5.04806 \mathrm{~L}$
$=5.05 \mathrm{~L}$
Therefore, the volume occupied is 5.05 L .

Q18. 2.9 g of a gas at $95^{\circ} \mathrm{C}$ occupied the same volume as 0.184 g of dihydrogen at $17^{\circ} \mathrm{C}$, at the same pressure. Calculate the molar mass of the gas.

Answer:
Volume,
$\mathrm{V}=\frac{m R T}{M p}$
$=\frac{0.184 \times R \times 290}{2 \times p}$
Let M be the molar mass of the unknown gas.
Volume occupied by the unknown gas is,
$=\frac{m R T}{M_{p}}$
$=\frac{2.9 \times R \times 368}{M \times p}$
According to the ques,
$\frac{0.184 \times R \times 290}{2 \times p}=\frac{2.9 \times R \times 368}{M \times p}$
$\frac{0.184 \times 290}{2}=\frac{2.9 \times 368}{M}$
$M=\frac{2.9 \times 368 \times 2}{0.184 \times 290}$
$=40 \mathrm{~g} \mathrm{~mol}^{-1}$
Therefore, the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$

Q19. A mixture of dioxygen and dihydrogen at 1 bar pressure has 20% by weight of dihydrogen. What is the partial pressure of dihydrogen?

Answer:
Let the weight of dihydrogen be 20 g .
Let the weight of dioxygen be 80 g .
No. of moles of dihydrogen $\left(n_{H 2}\right)$,
$=\frac{20}{2}$
$=10$ moles
No. of moles of dioxygen $\left(\mathrm{n}_{\mathrm{O} 2}\right)$,
$=\frac{80}{32}$
$=2.5$ moles
Given:
$p_{\text {total }}=1$ bar
Therefore, partial pressure of dihydrogen $\left(\mathrm{p}_{\mathrm{H} 2}\right)$,
$=\frac{n_{H_{2}}}{n_{H_{2}}+n_{O_{2}}} \times p_{\text {total }}$
$=\frac{10}{10+2.5} \times 1$
$=0.8 \mathrm{bar}$
Therefore, the partial pressure of dihydrogen is 0.8 bar.

Q20. What will be the SI unit for the quantity $\frac{p V^{2} T^{2}}{n}$?

Answer:

SI unit of pressure, $\mathrm{p}=\mathrm{Nm}^{-2}$
SI unit of volume, $V=m^{3}$
SI unit of temp, $T=K$
SI unit of number of moles, $n=m o l$
Hence, SI unit of $\frac{p V^{2} T^{2}}{n}$ is,
$=\frac{\left(N_{m}^{-2}\right)\left(m^{3}\right)^{2}(K)^{2}}{m o l}$
$=\mathrm{Nm}^{4} \mathrm{~K}^{2} \mathrm{~mol}^{-1}$

Q21. According to Charles' law explain why $-273^{\circ} \mathrm{C}$ is the lowest possible temp.

Answer:

According to Charles' law

At constant pressure, the volume of a fixed mass of gas is directly proportional to its absolute temp.

It was found that for all gasses (at any given pressure), the plot of volume vs temp. (in ${ }^{\circ} \mathrm{C}$) is a straight line
If we extend the line to zero volume, then it intersects the temp-axis at $-273^{\circ} \mathrm{C}$. That is the volume of any gas
at $-273^{\circ} \mathrm{C}$ is 0 . This happens because all gasses get transferred into liquid form before reaching $-273^{\circ} \mathrm{C}$.
Therefore, it can be said that $-273^{\circ} \mathrm{C}$ is the lowest possible temp.

Q22. Critical temp of methane and carbon dioxide are $-81.9^{\circ} \mathrm{C}$ and $31.1^{\circ} \mathrm{C}$ respectively. Which of the following have stronger intermolecular forces? Why?

Answer:

If the critical temp of a gas is higher then it is easier to liquefy. That is the intermolecular forces of attraction among the molecules of gas are directly proportional to its critical temp.

Therefore, in CO_{2} intermolecular forces of attraction are stronger.

Q23. What is the physical significance of Van der Waals parameters?

Answer:

The physical significance of ' a ':
The magnitude of intermolecular attractive forces within gas is represented by ' a '

The physical significance of ' b ':
The volume of a gas molecule is represented by 'b'

